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We study a quantum dot Josephson junction inside an Aharonov-Bohm environment. The geometry is
modeled by an Anderson impurity coupled to two directly linked BCS leads. We illustrate that the well-
established picture of the low-energy physics being governed by an interplay of two distinct �singlet and
doublet� phases is still valid for this interferometric setup. The phase boundary depends, however, nonmono-
tonically on the coupling strength between the superconductors, causing the system to exhibit re-entrance
behavior and multiple phase transitions. We compute the zero-temperature Josephson current and demonstrate
that it can become negative in the singlet phase by virtue of the Coulomb interaction U. As a starting point, the
limit of large superconducting energy gaps �=� is solved analytically. In order to tackle arbitrary ��� and
U�0, we employ a truncated functional renormalization-group scheme which was previously demonstrated to
give quantitatively reliable results for the quantum dot Josephson problem.

DOI: 10.1103/PhysRevB.79.045110 PACS number�s�: 74.50.�r, 75.20.Hr

I. INTRODUCTION

The low-energy behavior of quantum dot Josephson junc-
tions is governed by an interplay of superconductivity and
the Kondo effect. The physics emerging from the competi-
tion of these correlation phenomena was discussed decades
ago in the context of magnetic impurities inside supercon-
ducting metals.1–3 If the Kondo energy scale TK is much
larger than the superconducting gap �, local magnetic mo-
ments are screened by virtue of the Kondo effect. This causes
Cooper pairs to break, and the ground state of the system
becomes a Kondo rather than a BCS singlet. In the opposite
limit TK��, Kondo screening is disturbed due to the super-
conducting gap at the Fermi energy, and the ground state
describes free magnetic moments. At temperature T=0, a
first-order level-crossing quantum phase transition from a
nonmagnetic singlet to a degenerate �so-called magnetic�
ground state is observed if � /TK increases.

In recent years, the rise of nanotechnology allowed for
sandwiching quantum dots between superconducting elec-
trodes and for measuring the equilibrium Josephson current
as a function of well-controllable microscopic
parameters.4–14 This was the motivation to theoretically rein-
vestigate the interplay between superconductivity and Kondo
physics in the context of �Anderson-type� models which fea-
ture all parameters �and not only � /TK� necessary to describe
the experimental quantum dot Josephson junction.15–23 Both
the phase boundary between the �Kondo� singlet and the
�magnetic� doublet phases, and the supercurrent were calcu-
lated using reliable many-particle methods to tackle the vital
Coulomb interaction U.18,22,23 In particular, it was demon-
strated that the critical supercurrent as a function of the quan-
tum dot energy � can be obtained in good agreement with
experimental data.14

If a quantum dot is placed in one arm of a nonsupercon-
ducting closed Aharonov-Bohm geometry, signatures of the
Fano effect can be experimentally observed in mesoscopic
systems.24–26 In addition, the interferometric setup allows for

extracting physical properties which cannot be accessed by
measurements on the isolated dot �such as the transmission
phase�.27–29 Both situations were investigated theoretically
using Anderson-type impurity models as well as appropriate
many-body methods in order to obtain a physical under-
standing consistent with the observed data.30,31 In contrast,
no interferometric experiments on quantum dots within a su-
perconducting environment have been performed so far.
However, in consideration of the rapid progress in nano-
science, it is reasonable to assume that experimental �e.g.,
transport� data on such setups will become available fairly
soon.

As mentioned above, both the singlet-doublet phase tran-
sition and the supercurrent of the quantum dot Josephson
junction were extensively investigated theoretically, most
times employing the single impurity Anderson model with
BCS source and drain leads.15–23 In contrast, the Aharonov-
Bohm situation where both superconductors are in addition
directly linked by a hopping matrix element td has only been
partly investigated. Zhang32 used a slave-boson mean-field
approach to compute the supercurrent for the �singlet� situa-
tion where the Kondo temperature TK is larger than the en-
ergy gap �. However, the author failed to obtain correct
results in the analytically solvable noninteracting case U=0,
rendering his results questionable.33 The opposite �doublet�
situation with TK�� was studied by Osawa et al.34 They
employ, however, a Hartree-Fock framework which cannot
account properly for Kondo correlations with the latter being
a vital ingredient for the problem at hand. Most surprisingly,
both works do not at all address the question whether the
general picture of the existence of singlet and doublet low-
energy states survives if the superconductors are connected
directly, and, if so, how the ground state actually depends on
the physical parameters �particularly td� of the system. It is
the first aim of this paper to clarify this issue and to demon-
strate that the T=0 “phase boundary” is affected nonmono-
tonically by a finite coupling td�0, causing the system to
exhibit re-entrance behavior and multiple singlet-doublet
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transitions. Second, we present reliable results for the zero-
temperature Josephson current J for arbitrary system param-
eters �not focusing on a specific regime of � /TK �Ref. 35��
and particularly illustrate that J can become negative in the
singlet phase.37 Our starting point is the so-called atomic
limit �=� which can be treated analytically even in the pres-
ence of finite Coulomb correlations. In order to address ar-
bitrary ��� and U�0, we employ the functional renormal-
ization group �FRG�. By comparison with accurate data
obtained from the numerical renormalization-group �NRG�
framework, it was illustrated that this �after truncation� ap-
proximate method succeeds both qualitatively and quantita-
tively in producing the phase boundary and supercurrent for
the simple quantum dot Josephson junction �td=0�.23 In ad-
dition, we will demonstrate that for td�0 the FRG scheme
benchmarks excellently against the analytic result at �=�,
thereby altogether providing a reliable tool in studying the
problem at hand.

This paper is organized as follows. In Sec. II, we intro-
duce the single impurity Anderson model with directly
linked BCS superconducting leads and compute the associ-
ated noninteracting impurity Green’s function. The limit �
=� is solved analytically in Sec. III A, and Sec. III B is
devoted to a short introduction of the FRG framework. The
phase boundary of the singlet-doublet level-crossing phase
transition as well as the Josephson current are discussed in
Secs. IV and V, respectively. We conclude our paper with a
short summary �Sec. VI�.

II. MODEL

In order to describe the geometry depicted in Fig. 1, we
introduce the standard BCS and Anderson impurity Hamil-
tonian

Hdot = �
�

�d�
†d� + U�d↑

†d↑ −
1

2
��d↓

†d↓ −
1

2
� ,

Hs=L,R
lead = �

k�

�skcsk�
† csk� − ��

k

�ei	scsk↑
† cs−k↓

† + H.c.� ,

�1a�

as well as the coupling terms

Hs=L,R
coup = −

t
�N

�
k�

csk�
† d� + H.c.,

Hdirect = −
td

N
�

k1k2�

cLk1�
† cRk2� + H.c.. �1b�

Both csk� and d� denote usual fermionic annihilation opera-
tors. The quantum dot is characterized by a gate voltage �

and a local Coulomb repulsion U between spin-up and spin-
down electrons. For simplicity, we assume that the left
�s=L� and right �s=R� BCS leads have equal superconduct-
ing energy gaps � while exhibiting a finite phase difference
	=2	L=−2	R. Both leads are locally coupled to each other
and to the quantum dot by �real� hopping amplitudes td and t,
respectively.

As a first step to solve the quantum many-particle prob-
lem associated with Eqs. �1a� and �1b�, it is useful to com-
pute the noninteracting Green’s function of the quantum dot.
This is achieved straightforwardly using the equation-of-
motion technique.34,38 One obtains

G0�z� = �		d↑d↑
†

z 		d↑d↓

z

		d↓
†d↑

†

z 		d↓
†d↓

z

�
U=0

=
1

z − �
3 + t
3AL�z� + t
3AR�z�
. �2�

Here, 
i denote the Pauli matrices, and As determines the lead
“self-energy:”

As=L,R�z� = t
tdgs�z�
3gs̄�z�
3 − gs�z�
3

1 − td
2gs�z�
3gs̄�z�
3

, �3�

with the definition L̄=R, R̄=L as well as the implicit under-
standing �here and in the following� that the inverse is mul-
tiplied from the left. The local Green’s function gs�z� of the
isolated BCS leads is given by

gs�z� = −
��

��2 − z2� z − �ei	s

− �e−i	s z
� . �4�

We have assumed the local density of states �=�k
��
−�sk� /N and thus the hybridization energy

� = 2��t2 �5�

to be constant, implementing the so-called wide-band limit.
Following the arguments presented in Ref. 23, one can

show that the Josephson current Js= i	�H ,Ns�
 �with Ns=L,R
being the particle number operator of the left and right leads,
respectively� can be computed from the exact expression
�taking �=1 and the electron charge e=1 in the following�

Js = 2T�
i�

Im Tr�tGsd�i�� − tdGss̄�i��� , �6�

where T is the temperature of the system, and Gsd�z� and
Gss̄�z� denote the interacting dot-lead and lead-lead Green’s
function, respectively. The first and second terms of Eq. �6�
can naturally be regarded as the impurity and direct contri-
bution to the supercurrent. Employing the equation-of-
motion technique and generalizing the resulting relations by
virtue of the Dyson equation for U�0, both Gsd�z� and Gss̄�z�
can be expressed in terms of the interacting dot Green’s func-
tion G�z� as follows:

FIG. 1. �Color online� The interferometric quantum dot Joseph-
son junction considered in this paper.
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Gsd�z� = As�z�G�z� ,

Gss̄�z� = As�z�G�z�As̄
†�z�� −

tdgs�z�
3gs̄�z�

1 − td
2gs�z�
3gs̄�z�
3

. �7�

At �=0, the right-hand side of Eq. �6� can be evaluated
analytically up to second order in td, leading to the sinusoidal
law J�sin�	� which describes the ordinary Josephson
junction.38

Employing a gauge transformation, one can show that the
supercurrent obtained from Eq. �6� fulfills JL=−JR=J, pro-
vided that G�z� is given exactly.23 In the present paper, we
focus exclusively on the situation of fully symmetric super-
conducting leads �featuring equal-energy gaps �=�L=�R as
well as equal hybridization strengths �=2�L=2�R� and can
thus refrain �since JL=−JR trivially holds� from addressing
the issue of current conservation within the approximate
functional renormalization-group approach introduced
below.23

III. SOLUTION STRATEGIES

In order to study the quantum many-particle problem im-
plicated by the Hamiltonian of Eqs. �1a� and �1b�, we pro-
ceed as follows. First, we demonstrate that in the limit of
large BCS gaps �=� one can derive an analytic expression
for the phase boundary describing the singlet-doublet phase
transition �Sec. III A�. In order to tackle the Coulomb corre-
lation U at arbitrary ���, we introduce a truncated func-
tional renormalization-group scheme �Sec. III B�. By com-
parison with numerical RG data, it was previously shown
that the latter provides an accurate tool to calculate the phase
boundary as well as the supercurrent for the �noninterfero-
metric� quantum dot Josephson junction.23

A. Analytic treatment of the limit �=�

For td=0, it was previously demonstrated �see Refs. 22
and 23� that the limit of large superconducting gaps �=�
allows for an analytic treatment even in the presence of finite
Coulomb correlations U. This is still possible for the
Aharonov-Bohm situation. Namely, at �=� the noninteract-
ing dot Green’s function �Eq. �2�� becomes

�G0�z��−1 = �z − �̃ �̃

�̃ z + �̃
� , �8�

where the effective parameters �̃ and �̃ are given by

�̃ = � + �
t̃d cos�	� + t̃d

3

1 + 2t̃d
2 cos�	� + t̃d

4
,

�̃ = � cos�	/2�
1 + t̃d

2

1 + 2t̃d
2 cos�	� + t̃d

4
, �9�

and t̃d=��td. Including the interacting part, the problem is
thus equivalent to diagonalizing the effective two-particle
Hamiltonian

Heff = �̃d↑
†d↑ + �̃d↓

†d↓ − �̃�d↑
†d↓

† + d↓d↑�

+ U�d↑
†d↑ −

1

2
��d↓

†d↓ −
1

2
� . �10�

This can be achieved straightforwardly by virtue of a
Bogolyubov transformation.38 It turns out that the ground
state of the system is either nondegenerate �a singlet which at
sufficiently large U can be thought of featuring Kondo
screening and broken Cooper pairs� or doubly degenerate �a
“magnetic” doublet generally associated with a free spin�,
illustrating that this well-known picture is still valid in the
presence of a finite coupling td�0. By comparison of the
corresponding many-particle energies, one can show that the
level crossing and thus the zero-temperature “phase transi-
tion” is determined by the implicit equation

U2 = 4�̃2 + 4�̃2. �11�

Since cos�	� can become negative for 0�	��, the right-
hand side of Eq. �11� is not necessarily a monotonic function
of the bare parameters � /� and td /�, immediately indicating
re-entrance behavior and multiple singlet-doublet phase tran-
sitions. This will be discussed in detail in Sec. IV.

B. Functional renormalization-group approach

The functional renormalization group is one implementa-
tion of Wilson’s general RG idea for interacting many-
particle systems.39 It starts with introducing an energy cutoff
� into the noninteracting Green’s function of the system un-
der consideration. Here, we choose a multiplicative infrared
cutoff �����−�� in Matsubara frequency space. By taking
the derivative of many-particle vertex functions �such as the
self-energy� with respect to the cutoff parameter �, one ob-
tains an infinite hierarchy of flow equations, and subsequent
integration from �=� down to the cutoff-free system �=0
leads to an in principle exact solution of the many-particle
problem. In practice, however, the infinite hierarchy needs to
be truncated, rendering the FRG an approximate method. In
this paper, we employ a truncation scheme that keeps the
flow equations for the self-energy and the two-particle vertex
evaluated at zero external frequencies. The resulting approxi-
mation to both quantities is frequency independent, contains
at least all terms up to order U, and can be computed nu-
merically with minor effort. It was demonstrated in recent
works that this truncated FRG scheme successfully describes
correlation effects �e.g., aspects of Kondo physics� in quan-
tum impurity systems.31,40 In particular, comparison with nu-
merical RG reference data showed that both the singlet-
doublet phase transition and the Josephson current of a
�noninterferometric� quantum dot Josephson junction can be
computed reliably using this framework.23

The FRG flow equations for the diagonal and anomalous
parts of the self-energy ��� and ��

�� associated with the
Hamiltonian of Eqs. �1a� and �1b� can be obtained by a slight
generalization of the derivation presented in Ref. 23. They
are given by
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�̇� =
U�

�
Re�G̃22

� �i��� ,

�̇�
� = −

U�

2�
�G̃12

� �i�� + G̃12
� �− i��� , �12�

and the flow equation of the effective interaction U� reads

U̇� =
�U��2

�
Re�G̃12

� �i��G̃21
� �i�� + G̃12

� �i��G̃21
� �− i��

− G̃11
� �i��G̃22

� �i�� − G̃11
� �i��G̃22

� �− i��� . �13�

We have defined the matrix G̃��i�� via

�G̃��i���−1 = �G0�i���−1 − � �� ��
�

���
��� − �� � . �14�

The initial conditions to the coupled differential Eqs. �12�
and �13� read ��→�=0, ��

�→�=0, and U�→�=U, and one
can carry out a numerical integration using standard Runge-
Kutta routines in order to obtain the frequency-independent
FRG approximations �=��=0 and ��=��

�=0 to the self-
energy. Thereafter, the Josephson current can be computed
from Eq. �6� and the approximate impurity Green’s function

G= G̃�=0.

IV. PHASE BOUNDARY

A. No direct coupling (td=0)

For the simple quantum dot Josephson junction �td=0�, it
was previously demonstrated that the boundary between the
singlet and doublet phases of the system is, even though
roughly being governed by the ratio � /TK, an explicit func-
tion of all parameters of the system.15,18,22,23 The latter are
the Coulomb interaction U, the quantum dot energy �, the
superconducting gap �, the dot-lead hybridization �, and the
phase difference 	. According to Eq. �11�, the atomic-limit
phase boundary for td=0 is determined by

U2 = 4�2 + 4�2 cos2�	/2� , �15�

illustrating that an increase in either U or 	 drives the system
toward the doublet phase, whereas a nondegenerate ground
state is energetically favored the more � is shifted away from
particle-hole symmetry.41 Functional and numerical
renormalization-group calculations showed that the overall
size of the doublet regime shrinks for ��� but all param-
eter dependencies of the phase boundary can still be under-
stood in analogy to the case of �=�.23 We will now demon-
strate that the same holds true for the more complicated case
of td�0.

B. Aharonov-Bohm situation, �=�

In order to understand how a direct link between the su-
perconductors affects the boundary of the singlet-doublet
phase transition at �=�, it is instructive to study the param-
eter dependence of the critical interaction strength Ucrit for
the case of particle-hole symmetry �=0 first. The quantity

Ucrit can be defined unambiguously, whereas, e.g., a critical
coupling strength td

crit cannot due to the structure of Eq. �11�.
For 	=0 and 	=�, one obtains

Ucrit
2

4
= 
 �2/�1 + t̃d

2� 	 = 0,

t̃d
2�2/�1 − t̃d

2�2 	 = � ,
� �16�

illustrating that there is a fundamental difference between
both cases. At small 	, the system is driven into the doublet
phase if td is increased �see, e.g., the curve for 	=0.2� in the
inset of Fig. 2�b��. In contrast, the phase boundary Ucrit�td�
depends nonmonotonically on the direct coupling strength
for 	=�. At small values of td, Ucrit increases quadratically,
acquires a maximal value, and finally falls off quadratically
for large td �see, e.g., the data for 	=0.8� in the inset of Fig.
2�b��. Thus, a system which is initially in a doublet state can
be driven into the singlet phase by increasing the coupling td
at fixed U but eventually always re-enters the doublet phase.

Using Eq. �11�, one can show that the behavior of the
phase boundary Ucrit�td� for arbitrary 	 is always qualita-
tively similar to the case of either 	=0 or 	=�. The onset of
a nonmonotonic dependence on td occurs for 	�0.29�, im-
plying that one can expect to observe re-entrance behavior
even if the phase difference cannot be controlled precisely. If
the gate voltage is tuned away from the point of particle-hole
degeneracy, the phase boundary exhibits an additional extre-
mum �see Figs. 2�a� and 2�c��. An additional minimum oc-
curs for either large 	 and arbitrary ��0 or small 	 and �
�0, whereas one observes an additional maximum for small
	 and ��0. Since the critical value Ucrit�td=0� is always
larger than the asymptote Ucrit�td→��, the system can ex-
hibit a total of three singlet-doublet phase transitions if the
coupling strength td is varied at fixed U �and large 	�.

Due to the fact that the right-hand side of Eq. �11� is a
horizontally shifted quadratic function of the impurity energy
� �see FRG data for finite ��� in Fig. 4�, the above-
mentioned re-entrance behavior can also be observed by
changing the impurity energy � while fixing all other param-
eters. Tuning � away from particle-hole symmetry can occa-
sionally drive a system which is initially in a singlet state
into the doublet and then ultimately back into the singlet
phase. In contrast, the dependence of Ucrit on the phase dif-
ference 	 is always monotonous. At small td, a doublet
ground state is favored if 	 is increased, whereas the oppo-
site holds for larger td �see Figs. 2�a�–2�c��. For ��0 and
td→�, the system is again monotonously driven toward the
doublet phase if 	 is increased. One can analytically demon-
strate that the crossover between the regimes of �	Ucrit�0 is
characterized by values of td where the phase boundary is
completely independent of 	.

C. Aharonov-Bohm situation, arbitrary �

The truncated FRG scheme introduced in Sec. III B al-
lows for computing �an approximation to� the self-energy but
does not yield the many-particle eigenstates of the system
under consideration �in contrast, e.g., to the numerical renor-
malization group�. Within this approach, the phase boundary
is determined from discontinuities in the supercurrent with
the understanding �based on the analytic treatment of the
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limit �=� as well as on NRG calculations at td=0 �Ref. 18��
that the ground state is nondegenerate in the limit of small U.

For the simple quantum dot Josephson junction �td=0�,
comparison with NRG data illustrated that the approximate
FRG scheme describes the phase boundary as well as the
supercurrent both qualitatively and quantitatively at small to
intermediate Coulomb correlations U�8�, whereas at larger
U qualitative features of both quantities are still captured
correctly.23 Comparing FRG data for large � with the ana-
lytic result of Eq. �11� shows that the former is also well
suited in tackling the problem at hand. The FRG reproduces
all characteristics of the phase boundary at td�0 correctly
�compare the insets of Figs. 2�a� and 2�b� with the main
parts�; only the size of the singlet phase is slightly overesti-
mated. The latter tendency was already observed at td=0.

FRG calculations at finite ��� demonstrate that all pa-
rameter dependencies of the phase boundary are similar to
the case of �=�; only the size of the doublet regime shrinks
�see Figs. 2, 3, and 4�a� for detailed comparisons of Ucrit�td�
and Ucrit���, respectively�. This is again consistent with re-
sults for the simple quantum dot Josephson junction
�td=0�.23 Since the FRG scheme, however, is approximative
in U but the critical interaction strength Ucrit becomes large
for small �, it is reasonable to additionally study the phase
boundary in terms of a different quantity. It turns out that a
critical phase difference 	crit can always be defined unam-
biguously, and that the behavior of 	crit�td ,U� for arbitrary �
is similar to the atomic-limit solution �see Fig. 4�b��. One
can thus conclude that all parameter dependencies of the
phase boundary can be understood from Eq. �11�, only the

size of the doublet regime shrinks monotonously for finite
���.42

V. JOSEPHSON CURRENT

In this section, we present zero-temperature FRG results
for the equilibrium supercurrent J flowing through the Jo-
sephson junction in the presence of a finite phase difference
	 between the superconducting leads. According to Eq. �6�,

πρtd

U
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/Γ

∆
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=
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0 1 2
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∆
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φ/π=0.8
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doublet

(a) (b) (c)

(d) (e) (f)

FIG. 2. �Color online� The critical interaction strength Ucrit as a �nonmonotonic� function of the direct coupling td for different BCS gaps
� and impurity energies �, altogether characterizing the singlet-doublet level-crossing phase transition of the Aharonov-Bohm quantum dot
Josephson junction. Solid lines where obtained from the FRG approach introduced in Sec. III B while dashed lines display the analytic result
derived in the limit �=� �see Eq. �11��. The phase difference between the left and right superconducting leads is given by 	=0.2�, 0.4�,
0.6�, and 0.8� �from top to bottom at td=0�. The axis of the insets are scaled the same as the axis of the corresponding main part.

0
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8

φ/π=
0.2
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πρtd

0
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10 φ/π=
0.6

U
cr

it
/Γ
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FIG. 3. �Color online� The same as Fig. 2, but for fixed �=0 and
different � /�=1000, 5, 2, 1, and 0.5 �from bottom to top�. The
phase boundary always resembles the analytic form derived in the
limit �=� �Eq. �11��; only the size of the doublet phase shrinks
monotonously with the BCS energy gap.
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this current can be interpreted to comprise of a “direct” and
an “impurity” contribution. In contrast to the phase bound-
ary, it is not determined solely by the dot Green’s function,
rendering it impossible to derive an analytic result for J in
the limit �=�. Thus, we focus exclusively on discussing
FRG data for the Josephson current, again recalling that this
framework was successfully benchmarked against numerical
RG reference data for td=0.23

In order to discuss how a direct link between the super-
conducting leads affects the supercurrent J, it is instructive to

recall the simple quantum dot Josephson junction �td=0�
first. For small � /TK, the system is in the singlet phase for
all impurity energies �, and the current J��� exhibits a line
shape which resembles the linear-response conductance of
the ordinary single impurity Anderson model �see the
td=0–curves of Fig. 5�. In the opposite limit, J��� changes
discontinuously at some critical value ��crit as the system
enters the doublet phase. The current becomes negative and
almost independent of the impurity energy.43 In both cases,
the evolution of J��� in the presence of a finite link td�0 is
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6
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cr
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FIG. 4. �Color online� �a� FRG results for the critical interaction Ucrit as an �almost quadratic� function of the impurity energy � for
� /�=5, 2, and 0.5 �from bottom to top�. �b� Critical phase difference 	crit separating the singlet �S� from the doublet �D� phase as a function
of the direct coupling td. The displayed behavior is similar to analytic result derived at �=�.
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FIG. 5. �Color online� Josephson current J �in units of J0=e� /�� as a function of the impurity energy � for constant 	=0.5�, and
td /�=0, 0.15, 0.3, 0.6, and 1.0 �from bottom to top at large ��. The results were obtained from the FRG framework. In presence of a finite
coupling td, J��� acquires a Fano-type line shape analogous to the linear-response conductance of the ordinary Anderson model, and the
nonmonotonic phase boundary manifests as repeatedly appearing and disappearing discontinuities. In addition, one observes that the
Josephson current can become negative in the singlet phase �see, e.g., the lower right panel which describes a singlet situation at intermediate
and large ��. The displayed behavior is generic for arbitrary phase differences 	.
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Fano type.32,34 In addition, the nonmonotonic dependence of
the phase boundary on the coupling strength td results in
multiple singlet-doublet phase transitions manifesting as the
appearance and disappearance of discontinuities of J��� �see
Fig. 5�. One should particularly note that no matter how
small U or �, the system will always enter the doublet phase
in the limit of large hoppings td, provided that the impurity
energy is not too large.

For the simple quantum dot Josephson junction �td=0�,
the supercurrent is always positive �negative� in the singlet
�doublet� phase. Both no longer necessarily hold in the pres-
ence of a finite coupling td. Whereas it is rather intuitive that
J can become positive in the doublet regime due to the ad-
ditional direct link �having in mind the ordinary Josephson
junction where two superconductors are coupled by a hop-
ping td and J�0 holds for 0�	���, one can most notably
also observe a negative current in the singlet phase,44 par-
ticularly at small BCS energy gaps � �see Fig. 5�. It is,
however, imperative to point out that this is solely caused by
the Coulomb interaction, and the supercurrent at U=0
�where the FRG becomes exact� always remains positive in
the singlet phase. In contrast, Zhang �Ref. 32� obtains a
negative singlet current yet in the noninteracting limit, ren-
dering these results a priori highly questionable.

The Josephson current as a function of the phase differ-
ence 	 displays the same characteristics as J���. Multiple
phase transitions manifest as appearing and disappearing dis-

continuities of J�	� �see Fig. 6�, and can be ultimately un-
derstood from the functional form of the atomic-limit phase
boundary �Eq. �11��. In addition, the current can become
negative in the singlet phase in presence of both a direct
coupling td and finite Coulomb correlations. The actual form
of J�	� is rather complicated. It is displayed for various pa-
rameter sets in Fig. 6.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated a quantum dot Joseph-
son junction embedded within an Aharonov-Bohm environ-
ment. By analytically solving the atomic limit of large BCS
gaps �=�, we have shown that the low-energy physics of
this system is governed by an interplay of two distinct �sin-
glet and doublet� phases in complete analogy with the non-
interferometric case where both superconductors are not
coupled directly. The phase boundary, however, depends
nonmonotonically both on the coupling strength td and the
quantum dot energy �. By carrying out functional
renormalization-group calculations �which benchmark excel-
lently against the atomic-limit result� at arbitrary �, we have
demonstrated that the overall size of the doublet regime
shrinks monotonously with the gap size but the functional
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FIG. 6. �Color online� Josephson current J �in units of J0=e� /�� as a function of the phase difference 	 for particle-hole symmetry �=0.
Note that in the lower right panel the system is in a singlet state for td�� and large 	, illustrating that the current can become negative in
this regime by virtue of the Coulomb interaction.
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form of the phase boundary always remains similar to the
analytic expression derived at �=�. Thus, even if all system
parameters cannot be adjusted experimentally in a precisely
controlled way, one can quite generally expect to observe
re-entrance behavior within an interferometric quantum dot
Josephson junction. At finite couplings td, the supercurrent
J��� acquires a Fano-type line shape analogous to the linear-
response conductance of the ordinary Anderson model. Most

importantly, we have shown that Coulomb correlations can
cause J to become negative in the singlet phase.
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limit of � /��1 �as this would require TK /��1�, no matter
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